

NX Hybrid Additive Manufacturing

Transforming component design and manufacturing

Benefits

- Enable new designs
- Machine internal areas during build
- Repair parts easily
- Tightly control tolerance during build
- Produce finished parts on one machine

Features

- Feature decomposition for different build vectors
- New additive CAM operations
- Support for DMG MORI Lasertec Hybrid machines

Summary

3D metal printing can be accomplished by different methods and the technology will continue to evolve. Most common are powder bed printers, which maintain a container of powder and selectively fuse regions into solids one layer at a time. Another deposition technique developed for cladding has gained acceptance as a fast and flexible printing method: a powder deposition nozzle heats the building workpiece with a laser and blows a controlled stream of metal powder right onto the melt pool.

Why this new deposition method is important

This powder deposition process allows you to place material in the desired composition exactly where you want it (and nowhere else). You can make things that are impossible to make in any other way, including:

- Internal voids, webs, honeycombs and lattice structures
- Internally-embedded components
- Parts with custom nonhomogeneous (graded) materials

3D printing with a metal deposition nozzle.

NX Hybrid Additive Manufacturing

As a result, material composition and placement become design variables, and engineering part performance can be dramatically improved. It might not be too ambitious to say this technology will be the catalyst for the next industrial revolution.

Hybrid manufacturing

DMG MORI has developed a new class of machine tool that brings the additive metal deposition nozzle capability of the latest 3D printing together with the axis control and metal-cutting capabilities of modern machining centers. This combination means that metal deposition can be performed along various axes. And the 3D printed material can be machined to precise tolerances at any stage in the process, even going back and forth between metal deposition and metal cutting as often as needed. This combination of additive and subtractive manufacturing is the basis of the term: hybrid additive manufacturing.

NX Hybrid Additive Manufacturing

NX[™] software provides support for new hybrid-manufacturing technologies in which additive manufacturing (3D

printing or metal deposition) is incorporated with subtractive (cutting) methods in a traditional machine-tool environment. These manufacturing techniques will revolutionize the way we think about making parts. By building complex geometries, including internal cavities, and then machining them for tight tolerances as they are built, new classes of parts can be manufactured, or many setups may be consolidated into one.

- **Prototype:** This application accounts for most of the 3D printing and stereolithography processes to date. Quickly evaluating prototypes will continue to be a strength of additive and hybrid technologies.
- Production: New laser sintering (powder bed) capabilities are moving us toward using additive manufacturing approaches for part production. The hybrid techniques will accelerate this trend.
- Repair: By combining metal deposition and traditional metal cutting into one machine environment, there are many possibilities for using the application for repair and refurbishment.

Hybrid-additive manufacturing will fundamentally change how we think about manufacturing components.

Solution details

The NX Hybrid Additive Manufacturing solution includes a suite of unique capabilities across computer-aided design (CAD) and computer-aided manufacturing (CAM) that enable the development of programs for the new DMG MORI hybrid machines. These are organized in a special toolbar for utilizing the additive-manufacturing processes.

The additive manufacturing toolbar.

Automatic and semiautomatic decomposition of parts into features for additive/subtractive operations definition.

Feature decomposition by build vectors

As a preprocess to programming the deposition paths, the build volume needs to be analyzed for possible build direction vectors and subdivided into additive features on that basis. NX has the modeling tools to handle this task for any geometry and even provides automated tools for certain prismatic geometries.

In-process workpiece

The in-process workpiece for NX CAM now supports both additive and subtractive steps in any order. Hybrid additive operations may be co-mingled with metal cutting operations, so the in-process workpiece must be able to represent both new material placed by the powder nozzles as well as removed material cut away by the machining operations. The verify capability also reflects both of these modes.

In-process workpiece and verification works for both additive and subtractive modes.

NX additive manufacturing deposition operations

Programming the powder deposition head means slicing the feature (decomposed subvolume) and building motion paths for each layer. This sounds very similar to the roughing approach we are familiar with in the NX CAM cavity mill operation, but programming motion for an additive process is fundamentally different from programming cutting tools. Patterns must not retrace areas (so they are not overbuilt) or overheat areas by staying in one region too long.

Planar-additive operations work from planar slices, while rotary additive operations work from cylindrical slices.

The NX Hybrid Additive Manufacturing solution provides the following specialized additive operations:

- Planar thin wall helical provides a helical outline pattern at each slice with no fill
- Planar spiral provides a spiral fill pattern at each slice
- Planar smooth offset follow part provides an offset fill pattern from the part outline inwards at each slice
- Planar zig zag infill provides a raster (zig zag) fill pattern at each slice
- Rotary spiral provides a spiral fill pattern at each slice
- Rotary thin wall helical a helical outline pattern at each cylindrical slice with no fill
- Rotary helical around part provides an offset fill pattern from the part outline inwards at each cylindrical slice
- Freeform additive coating apply coating to a 3D surface
- Freeform additive build-up build up structure from a 3D surface
- Freeform thin wall build up thin structures from a 3D surface

Siemens PLM Software www.siemens.com/plm

Americas +1 314 264 8499 Europe +44 (0) 1276 413200 Asia-Pacific +852 2230 3308

© 2016 Siemens Product Lifecycle Management Software Inc. Siemens and the Siemens logo are registered trademarks of Siemens AG. D-Cubed, Femap, Fibersim, Geolus, GO PLM, I-deas, JT, NX, Parasolid, Solid Edge, Syncrofit, Teamcenter and Tecnomatix are trademarks or registered trademarks of Siemens Product Lifecycle Management Software Inc. or its subsidiaries in the United States and in other countries. All other logos, trademarks, registered trademarks or service marks belong to their respective holders. 46834-A13 10/16 A